
Parameterized Algorithms and Parameter Selection
for Fast GPU-GPU Collective Communication

Peizhi Liu
Northwestern University

peizhi.liu@u.northwestern.edu

Sean Rhee
Northwestern University

seanrhee2024@u.northwestern.edu

Michael Wilkins
Argonne National Laboratory

mjwilkins18@gmail.com

Peter Dinda
Northwestern University
pdinda@northwestern.edu

Abstract—High-performance collective communication among
GPUs in modern supercomputers is crucial for enabling many
applications. Complex hierarchical interconnects between GPU
devices necessitate collective algorithms that can effectively lever-
age the underlying network topology. We present parameter-
ized algorithms for two GPU-to-GPU collectives, Allgather and
Allreduce, as well as an optimized permutation kernel used to
further enhance GPU collective communication. By employing a
LogGP-based model calibrated with real machine measurements,
we can efficiently simulate various parameter choices to identify
optimal settings for specific device allocations and message sizes.
Our comprehensive evaluation on NCSA Delta and Argonne
Polaris supercomputers demonstrates that our parameterized
algorithms can achieve, on average, a 20% speedup over their
non-parameterized counterparts, with our parameter selection
process capturing 98% of the potential speedup.

Index Terms—high performance computing, graphics process-
ing units, collective communication.

I. INTRODUCTION

State-of-the-art supercomputers in high-performance com-
puting (HPC) have adopted graphics processing units (GPUs)
as their main computing hardware, accelerating diverse sci-
entific applications like artificial intelligence [10]. These ac-
celerators have led to the development of low-latency, high-
throughput interconnects within hierarchical networks (§II-A).

To effectively utilize these networks, collective commu-
nication operations, or collectives, are the most common
primitives. Collectives, which abstract point-to-point commu-
nication, are crucial, yet bottleneck-prone operations in HPC
(§II-B). The algorithms that implement collective operations
are therefore essential for minimizing communication time and
are the focus of this paper. Existing optimizations for GPU
networks lack scalable, performant solutions for HPC (§II-C).

One recent study introduced parameterized algorithms for
optimized, scalable communication schedules (§II-D). These
algorithms include a user-adjustable parameter that, when
properly configured, can lead to significant speedups. How-
ever, the study concentrated on CPU-based communications,
leaving the effects on GPU communication unexamined.

We demonstrate that simple, yet non-obvious parameteriza-
tions effectively optimize GPU-to-GPU collective communica-
tion. We develop parameterized ring, recursive doubling, and
distance halving, recursive doubling algorithms for Allgather
and Allreduce on GPU clusters (§III). We furthermore harness
the distinctive features of GPUs to implement a device-specific
optimization, notably an in-place permutation kernel, for the

Fig. 1: Paper overview. New parameterized algorithms, ac-
curately deployed thanks to simulation, result in significant
speedups on large-scale GPU-based supercomputers.

distance halving, recursive doubling, Allgather algorithm and
its parameterization (§III-C).

To fully harness these parameterized algorithms, we must
select the correct parameter values. Using the well-known
LogGP model [5], we design a novel approach to simulate
collective algorithms (§IV). To improve the accuracy of the
model, we introduce the notions of device and node-level
network contention. As a result, the simulator can quickly
determine the best parameter value for a given algorith-
m/scale/message size, allowing users to easily achieve the
maximum speedup from our approach.

We conduct a thorough evaluation on two large-scale su-
percomputers (NCSA Delta and ANL Polaris) to validate the
usefulness of our algorithms and accuracy of our parameter
selection process (§V). Our results showcase how GPU-based
parameterized algorithms achieve speedups of 22% on average
over the baseline, non-parameterized algorithms similar to
those currently implemented in state-of-the-art libraries. Fig. 1
illustrates the narrative of this paper.

Our specific contributions are:

• We propose six parameterized collective algorithms for
the Allgather and Allreduce collectives and show that
collective algorithm parameterization is well-suited to
optimize GPU-to-GPU communication (§III).

• We introduce an innovative GPU-specific optimization,
an in-place permutation kernel, enhancing parameterized
algorithms specifically for GPUs (§III-C).



• We develop a novel simulation-based approach for al-
gorithmic parameter selection, achieving 98% of the
performance compared to optimal selection (§IV).

• We conduct a comprehensive evaluation on two super-
computers, NCSA Delta and Argonne Polaris, demon-
strating the effectiveness of algorithmic parameterization
in GPU-to-GPU communication across varying scales and
device allocations (§V).

Our code is available at github.com/PICCL-Project/PICCL.

II. BACKGROUND AND RELATED WORK

A. Leveraging Modern GPU and Node Networks

GPU hardware has become increasingly ubiquitous in HPC
systems, including the world’s first three exascale super-
computers [2]–[4]. GPUs within a node are connected via
high-bandwidth, low-latency connections such as NVIDIA’s
NVLink or AMD’s InfinityFabric. These intranode GPU links
add an additional layer to multi-port, multi-level hierarchical
networks. For example, ANL Polaris, one of this paper’s
evaluation systems, uses 600 Gbps NVLink to fully connect
the four GPUs within each node. The nodes are connected
with two 200 Gbps Slingshot network cards into a dragonfly
topology [19]. The performance gap between GPU-GPU di-
rect connections and the internode network necessitates new
collective algorithms to optimize the use of these links.

The multi-port capabilities of these networks also require
careful consideration. Multiple network ports allow multiple
simultaneous transfers, which can reduce communication bot-
tlenecks and improve overall throughput.

The SIMD (Single Instruction, Multiple Data) nature of
GPUs presents unique opportunities for developing novel
communication algorithms. GPUs are inherently designed to
perform parallel computations, executing the same operation
across multiple data points simultaneously. This parallelism
can be harnessed to accelerate communication tasks.

B. Importance of Collective Communication

Collective communication, often referred to as collective
operations or collectives, serves as an abstraction layer over
the message-passing model in distributed systems. Rather than
designating specific senders and receivers for each individual
message, programmers can employ collectives to define com-
munication patterns for entire groups of processes.

Collectives often represent a significant bottleneck in HPC
applications. A recent survey revealed that collective oper-
ations can consume up to 90% of the execution time in
distributed AI training workloads [11]. Some scientific ap-
plications spend as much as 80% of their total execution
time in communication [18]. Clearly, optimizing collective
communication algorithms can have far-reaching effects.

We focus here on two prevalent collective communication
operations: Allgather and Allreduce. Both operations facilitate
many-to-many communications among processes. The All-
gather operation collects data from all participating processes
and distributes it to every process in the group. In contrast,
the Allreduce operation aggregates data from all processes,

typically using an arithmetic operation, and then disseminates
the result to each process. These collectives are essential for
key applications, such as distributed AI [23], [28].

C. Optimizing Collective Communication for GPUs

Many previous works have offered new algorithms for
collectives. However, these algorithms are either older, generic
works [8], [15], [21], [25], [26], designed for specific intern-
ode network topologies [13], [22], or only consider specific
collectives (e.g., MPI Alltoall [12]). To specifically optimize
GPU-GPU collective communication, NVIDIA, AMD, and
Intel have all developed their own vendor-specific collective li-
braries: NCCL [20], RCCL [6], and oneCCL [17] respectively.
However, the algorithms implemented in these libraries do not
generalize well to arbitrary heterogeneous network topologies,
leaving performance on the table.

To overcome the performance issues with current vendor
“CCLs”, recent work synthesized collective algorithms using
SAT solvers [7], [24]. This approach can provide optimal per-
formance for fixed cluster topologies. However, it is intractable
on large-scale HPC systems. The SAT solver may take hours
to complete or fail to converge, especially for larger process
counts. This is exacerbated by the fact that schedulers on
space-shared supercomputers will assign different nodes (with
different effective topologies) for each job, demanding per-job
synthesis. Therefore, this approach has not been adopted by
the HPC community, seeing only select use by cloud providers.

D. Generalized Collective Algorithms

A recent addition to this corpus showed how “generalized”
algorithms are particularly effective for modern, hierarchical
networks [27]. Generalized algorithms expose a parameter,
often referred to as the “parameter,” “radix” or symbolically
as “k” or “k-value,” that can be tuned to optimize the commu-
nication pattern. This work found that recursive multiplying, a
generalization of the well-known recursive doubling algorithm,
is particularly effective for balanced (i.e., many-to-many)
collectives. On the other hand, k-ring, a generalization of the
ring algorithm, provided no practical benefit.

While showcasing promising results, this previous work
concentrated on generic CPU-CPU shared memory commu-
nication. This paper reconsiders and enhances parameterized
algorithms in the new context of GPU-GPU communication.

E. LogGP Performance Model

In this paper, we develop a novel simulation technique for
collective algorithms based on the LogGP model. LogGP, first
proposed by Alexandrov et al. [5] as an extension to the LogP
model [9], is an analytical model used for analyzing parallel
computation and communication. The model is comprised of
five separate parameters, each representing some aspect of
the communication. L is the latency of the communication
between endpoints. o, which can be separated into os and or,
corresponds to the per-message processor send and receive
overheads, respectively. g is the time between messages, which
can be thought of as the bandwidth for small messages. G is

https://github.com/PICCL-Project/PICCL


(a) K-ring inter-group rounds.

(b) K-ring intra-group rounds, only devices 0-2 shown.
Fig. 2: Allgather k-ring on 9 devices, k=3. K-Ring is com-
prised of (a) two inter-group rounds and (b) six intra-group
rounds.

the time per-byte for large message transfers, which corre-
sponds to the network bandwidth. Finally, P is the number of
total processes in the network.

As an example, a single message of size m takes s = os +
G ∗ (m− 1) time to send and r = L+ or time to receive. The
total time for one message is T = os +G ∗ (m− 1)+L+ or.
After the initial message, the time at which the next message
can be started from the same node is determined by Tnext =
os+G ∗ (m− 1)+max(0, g− os), depending on whether the
send overhead os of the next message can completely overlap
the per-message network gap g. In our analytical models, we
make the assumption that os ≤ g. We found this assumption
to be true for both Delta and Polaris.

Overall, the LogGP model is a simple yet precise framework
for high-performance communication. Given its established
use for modelling collective communication [5], [16], LogGP
is the preferred foundation for our GPU-to-GPU collective
communication simulator.

III. PARAMETERIZED COLLECTIVES

Parameterized collective algorithms can adapt to a het-
erogeneous network hierarchy while maintaining portability
and scalability. In this paper, we explore two classes of
parameterized algorithms, k-ring and recursive multiplying, for
the Allgather and Allreduce collectives and derive simplis-
tic analytical expressions for parameter values (k). We also
develop a distance-halving variant of recursive multiplying,
permuted recursive multiplying, and show how an in-place
GPU permutation kernel outperforms other implementations.

A. K-Ring

K-Ring is a parameterized version of the standard ring
algorithm, where each process has two adjacent neighbors.
In a standard ring algorithm, for p processes, each process
sends data to its next neighbor and receives data from its
previous neighbor, forwarding the previous round’s data until
the collective completes in p − 1 rounds. The ring algorithm
generally performs well for large message sizes because it

avoids network congestion by communicating with the same
adjacent partners each round. However, each round depends
on the previous round, meaning that in hierarchical networks,
faster connections must wait for slower ones, effectively
throttling the entire algorithm to the speed of the slowest link.

To overcome the limitations of the ring algorithm on modern
networks, k-ring introduces the concept of groups, where the
value k is the group size. For p processes, each process first
completes p

k − 1 rounds with a ring comprised of one process
from each group (the inter-group ring), then completes p− p

k
rounds within its group (the intra-group ring). Note that p −
p
k + p

k − 1 simplifies to p− 1, the same as the ring algorithm.
By splitting the collective into two different communication
domains, k-ring can decouple different link types. Fig. 2(a)
illustrates the inter-group rounds and Fig. 2(b) illustrates the
intra-group rounds for k-ring, Allgather with p=9 processes
and k=3. In total, there are eight rounds of communication.

Using the LogGP model, we derive analytic performance
estimates for k-ring. Subscripted I denotes inter-group com-
munication, subscripted i denotes intra-group communication,
and AG is shorthand for Allgather.

TI = os,I + (m− 1)GI +max(LI + or,I , gI − os,I)

Ti = os,i + (m− 1)Gi +max(Li + or,i, gi − os,i)

Tfinal = os,i + (m− 1)Gi + Li + or,i

TAG =
(p
k
− 1

)
TI +

(p
k
(k − 1)− 1

)
Ti + Tfinal

The analytical model for Allreduce is similar, with the
addition of a per-byte computation cost γ. We assume a naive
implementation that serializes computation with communica-
tion. Note that AR is shorthand for Allreduce.

TAR = TAG + (p− 1)mγ

The cost models presented above are implementation-
dependent. For example, in Allreduce, communication and
computation stages can be overlapped. If γ ≤ G, a pipelined
Allreduce implementation would overlap all but the last byte
of computation. Thus, we might expect that the (p − 1)mγ
term in the expression above could be lowered to (p − 1)γ.
Additionally, in cases where inter and intra-group rings utilize
different interconnects (e.g. k is selected such that inter-group
communication traverses a NIC while intra-group communica-
tion uses NVLink), it is possible to overlap intra-group rounds
with inter-group rounds, thereby giving:

TAG,overlap =
(p
k
− 1

)
max

(
TI , (k − 1)Ti

)
+ (k − 2)Ti + Tfinal

We leave implementation-specific optimizations as future
work. The focus of this paper is to showcase the inherent
benefit of these parameterized algorithms, external to imple-
mentation optimization. In the case of k-ring, the choice of
a k parameter both decouples interconnect types and lowers
communication volume over inter-group links, which is a clear
algorithmic improvement for nonuniform clusters.



(a) Recursive Multiplying

(b) Permuted Recursive Multiplying
Fig. 3: Allgather recursive multiplying (a) and permuted recur-
sive multiplying (b) algorithms on 9 devices, k=3. Permuted
recursive multiplying results in a final buffer that is permuted.

B. Recursive Multiplying

Recursive multiplying is a parameterized version of the
standard recursive doubling algorithm first presented in [27].
In recursive doubling, for every round r, a pair of nodes of
distance 2r−1 apart exchange messages. Recursive doubling
is best for small to medium messages since it only has log2p
rounds of communication.

Recursive multiplying generalizes recursive doubling by
introducing a parameter k, which specifies the number of
partners a process communicates with in each round. In
round r, each process exchanges kr−1 messages with k − 1
partners spaced kr−1 apart. As a result, recursive multiplying
completes in logk p rounds. Fig. 3(a) illustrates an Allgather
with p=9 processes and k=3. In total, there are two rounds of
communication.

For k > 2, and assuming the hardware supports concur-
rent send/receive operations, recursive multiplying reduces the
number of rounds relative to recursive doubling. This reduction
lowers overhead and latency, which are dominant costs for
small to medium message sizes. Given these properties, the
characteristics of GPU interconnects (§II-A) make them a
natural fit for recursive multiplying.

Using the LogGP model, we present a simple analytical
expression for recursive multiplying Allgather in a uniform
multi-radix topology. The cost of a single round r for recursive
multiplying is:

Ti(r) = os + (m ∗ kr−1 − 1)G+max(L+ or, g − os)

Tfinal = os + (m ∗ klogkp−1 − 1)G+ L+ or

The total cost of the Allgather is therefore as follows:

TAG = Tfinal +

logkp−1∑
r=1

Ti(r)

For Allreduce, every round has the same amount of data sent

and received. The single-round cost for Allreduce is adjusted
to be the following:

Ti = os + (m− 1)G+max(L+ or, g − os)

Tfinal = os + (m− 1)G+ L+ or

The final cost of Allreduce is thus:

TAR = (logkp− 1)Ti + Tfinal + logkp ∗mγ

C. Permuted Recursive Multiplying

In recursive multiplying Allgather, later rounds involve
larger messages sent over longer communication distances,
which reduces efficiency. To better exploit modern network
topologies, larger messages should be exchanged with nearby
processes. The distance halving recursive doubling algorithm
addresses this by halving the communication distance each
round [22]. However, since processes do not begin with
adjacent partners, each message in subsequent rounds contains
noncontiguous data.

As shown in [22], this limitation can be mitigated by an
initial exchange that “permutes” the data so the first exchange
involves adjacent elements. Their approach, however, requires
an additional non-minimal communication round to correct
the permuted buffers, adding overhead. We instead develop
a parameterized version of the distance halving, recursive
doubling algorithm, called the permuted recursive multiplying
algorithm, that leverages an in-place permutation kernel on the
GPU to preserve minimal communication and achieve better
performance.

Fig. 3(b) illustrates the data movement for permuted re-
cursive multiplying. Each process first copies its datum to
the beginning of the receive buffer. Nodes in round r then
communicate with partners spaced p/kr apart, storing the
incoming data contiguously, not at its original index. For
example, in Fig. 3(b), all processes initially receive data into
indices 1 and 2, even though this collectively represents the
full dataset.

At the end of communication, each buffer contains the
correct data in the wrong order. To restore order efficiently,
we exploit GPU architectures’ high-throughput on-device data
movement with a GPU permutation kernel. This kernel works
by first detecting permutation cycles in the buffer. A permuta-
tion cycle is a sequence of indices where the next adjacent
index denotes the permuted location of the buffer element
located at the current index. Permutation cycles are indepen-
dent, meaning that each index will only appear in one cycle.
Therefore, GPU threads can independently traverse and swap
elements within each cycle in parallel, yielding an ordered
buffer.

Our kernel performs the permutation in place, avoiding extra
device memory, and eliminates race conditions by ensuring
each element is accessed by only one thread. The approach
outperforms both minimal and non-minimal communication
schemes for small to medium message sizes, and because the
additional data movement is purely local, it scales efficiently
to large process counts.



IV. FAST PARAMETER SELECTION THROUGH SIMULATION

Selecting the right parameter values is essential for optimiz-
ing the performance of parameterized algorithms. In this paper,
we introduce a simulation method for choosing the algorithmic
parameters. Our simulation predicts the relative performance
of different parameters to find the best selection.

To simulate collective communication, we decompose each
collective into individual send/receive messages and use the
LogGP model to characterize them. Our schedule generator
creates a message schedule for a given algorithm and scale.

To simulate our schedules, we model the machine as an
abstract topology that groups nodes with similar link char-
acteristics. LogGP parameters for each group are derived by
profiling the real system. We then perform a discrete-event
simulation of the collective schedule using the LogGP model
to evaluate relative performance across different algorithms
and parameter values and identify the optimal configuration.
To more accurately capture performance for large message
sizes, we extend the LogGP model with contention models.

A. Collective Schedule

A collective schedule expresses a collective algorithm with
a set of device-to-device messages and dependencies between
messages that receive and forward the same data. Each mes-
sage in the collective schedule contains information about
its source and destination devices, as well as the amount of
data being transmitted. Together, the individual messages in
the collective schedule are interpreted by the discrete event
simulator in dependency order.

To enable simulation of larger-scale collectives, we develop
collective schedule generators for each of our algorithms.
User-specified inputs to a schedule generator include the
number of devices, total message size, and parameter value.
The generated message dependency graph is then encoded as
an XML file, where it is later consumed by the discrete event
simulator. Simulations of the same algorithm across different
systems and topologies can reuse the generated schedule.

B. GPU Topology and LogGP Parameters

We model the point-to-point messages in collective sched-
ules using the LogGP model. To model a modern HPC net-
work, we assume symmetry at each level, meaning all NVLink
connections or all links within a dragonfly group share the
same LogGP parameters. We obtain these parameters using
the low-overhead method described in [14]. Current systems,
typically with three to four network levels, require only a few
hours on a pair of nodes to obtain parameters per level. Since
this measurement is performed once per target machine, the
amortized cost of collecting parameters is negligible.

C. Discrete-Event Simulator

We estimate our algorithms’ performance using discrete
event simulation. The simulator uses the collective schedule
to determine when new message tasks can start, ensuring all
dependencies are met and there is no device-level contention
(§IV-D). Each initiated message schedules future LogGP

1 
B

2 
B

4 
B

8 
B

16
 B

32
 B

64
 B

12
8 

B
25

6 
B

51
2 

B
1 

KB
2 

KB
4 

KB
8 

KB
16

 K
B

32
 K

B
64

 K
B

12
8 

KB
25

6 
KB

51
2 

KB
1 

M
B

2 
M

B
4 

M
B

8 
M

B
16

 M
B

32
 M

B

Message Size

1.0

1.5

2.0

Re
la

tiv
e 

Sp
ee

du
p Contention

No contention
Measured
Baseline

Fig. 4: Relative speedup predicted by the simulator with (o)
and without (x) contention. With contention, the simulated
speedup matches the behavior of the measured speedup (solid),
converging to the baseline for large message sizes.

events based on the chosen LogGP parameter profile and
node-level contention(§IV-D). The LogGP parameter choice
depends on the GPU topology and message size. The simu-
lation results in the cost of executing the collective schedule
on the given topology with the associated LogGP parameters.
Schedules for collectives with different algorithmic parameters
can be input into the simulator, and the resulting costs are
compared to identify the parameter with the lowest cost.

Our simulator implementation is relatively fast; it takes only
3 minutes to evaluate the cost of a 64-device Allgather, ring
schedule for a 2 MB message size. We believe a multi-threaded
simulator could significantly reduce this time. Simulation is
preferred over exhaustive experimental tuning because it can
be run offline on a single node, making it much faster and
more resource-efficient, especially for larger allocations.

D. Device and Node Contention

In simulating collective communication on GPUs, we dis-
covered the need to consider device and node-level contention.
Device-level contention happens when multiple sends or re-
ceives on a single GPU device compete for limited hardware
resources. While GPUs can handle multiple send/receive prim-
itives concurrently, such as with a NCCL group, attempting
too many at once increases the message gap g when the
device hits its limit and must process tasks sequentially. We
call this threshold the device-radix. Node-level contention, on
the other hand, occurs when multiple devices on a single
node compete for limited interconnect resources, such as a
network interface controller (NIC). Node-level contention also
serializes messages going in and out of the node once a certain
threshold is reached. We call this threshold the node-radix.
When simulating Delta, we set the device-radix to 8 and node-
radix to 1, based on empirical observations.

We model device-level contention by delaying new mes-
sages once the maximum number of outstanding sends is
reached. For receives, we maintain a buffer of all message
bytes to be received when the maximum number of outstand-
ing receives is reached. Modeling node-level contention is
also crucial for simulation accuracy. Node contention in the
simulator is modeled using a node-level send/receive buffer,
where messages sent to or received from a device outside the
node must pass through this buffer. The node buffer arbitrates



1 
B

2 
B

4 
B

8 
B

16
 B

32
 B

64
 B

12
8 

B
25

6 
B

51
2 

B
1 

KB
2 

KB
4 

KB
8 

KB
16

 K
B

32
 K

B
64

 K
B

12
8 

KB
25

6 
KB

51
2 

KB
1 

M
B

2 
M

B

Message Size

1.0

1.1

1.2

1.3

1.4

1.5
Sp

ee
du

p
k=8

k=8
k=4

k=8 k=4
k=4 k=8

k=4
k=4 k=4

k=64

Parameterized
Non-Parameterized

(a) Allgather (Delta)

1 
B

2 
B

4 
B

8 
B

16
 B

32
 B

64
 B

12
8 

B
25

6 
B

51
2 

B
1 

KB
2 

KB
4 

KB
8 

KB
16

 K
B

32
 K

B
64

 K
B

12
8 

KB
25

6 
KB

51
2 

KB
1 

M
B

2 
M

B
Message Size

1.0

1.1

1.2

1.3

1.4

Sp
ee

du
p

k=8
k=8

k=4

k=4

k=8 k=8

k=4

k=4
k=4

k=4

k=2

Parameterized
Non-Parameterized

(b) Allgather (Polaris)

4 
B

8 
B

16
 B

32
 B

64
 B

12
8 

B
25

6 
B

51
2 

B
1 

KB
2 

KB
4 

KB
8 

KB
16

 K
B

32
 K

B
64

 K
B

12
8 

KB
25

6 
KB

51
2 

KB
1 

M
B

2 
M

B

Message Size

1.0

1.2

1.4

Sp
ee

du
p

k=8

k=8 k=8 k=8 k=8 k=8 k=8

k=4

k=2 k=2

Parameterized
Non-Parameterized

(c) Allreduce (Delta)
Fig. 5: Message Size vs. Speedup (Higher is Better), 16 Nodes
on Delta/Polaris. Parameterized algorithms provide significant
speedups across nearly all messages on both test platforms.

messages in and out of the node at a maximum rate that is
a multiple of G, based on the node-radix from the profile.
In the case of k-ring, node-level contention increases with
the parameter value k, becoming more significant at larger
message sizes. Fig. 4 illustrates simulation results with and
without node-level contention for k-ring (k=2) on a 2-node,
4 devices per node machine. At small to medium message
sizes (<64KB), simulations with and without contention are
relatively consistent. However, at sizes beyond 64KB, the
models diverge, with the contention model converging with
the baseline and matching our measured results. Enhancing
our LogGP-based event simulator with contention allows it
to accurately predict the relative performance of different
algorithms.

V. EVALUATION

We now describe our algorithm implementations, evaluation
mechanisms, and experimental results. We analyze the per-
formance of our algorithms at different scales and machines,
compare the effectiveness of a GPU-specific optimization for
collective algorithms, as well as show the effectiveness of
simulation-based parameter selection.

1 
B

2 
B

4 
B

8 
B

16
 B

32
 B

64
 B

12
8 

B
25

6 
B

51
2 

B
1 

KB
2 

KB
4 

KB
8 

KB
16

 K
B

32
 K

B
64

 K
B

12
8 

KB
25

6 
KB

51
2 

KB
1 

M
B

2 
M

B

Message Size

1.00

1.25

1.50

1.75

2.00

2.25

Sp
ee

du
p

1 nodes, 4 devices/node
4 nodes, 4 devices/node
16 nodes, 4 devices/node

64 nodes, 4 devices/node
Non-Parameterized

(a) Allgather

4 
B

8 
B

16
 B

32
 B

64
 B

12
8 

B
25

6 
B

51
2 

B
1 

KB
2 

KB
4 

KB
8 

KB
16

 K
B

32
 K

B
64

 K
B

12
8 

KB
25

6 
KB

51
2 

KB
1 

M
B

2 
M

B

Message Size

1.0

1.2

1.4

1.6

Sp
ee

du
p

1 nodes, 4 devices/node
4 nodes, 4 devices/node
16 nodes, 4 devices/node

64 nodes, 4 devices/node
Non-Parameterized

(b) Allreduce
Fig. 6: Message Size vs. Speedup, 1-64 nodes on Delta.
Parameterized algorithms achieve speedups at various scales.

1 
B

2 
B

4 
B

8 
B

16
 B

32
 B

64
 B

12
8 

B
25

6 
B

51
2 

B
1 

KB
2 

KB
4 

KB
8 

KB
16

 K
B

32
 K

B
64

 K
B

12
8 

KB
25

6 
KB

51
2 

KB
1 

M
B

2 
M

B

Message Size

0.8

1.0

1.2

Sp
ee

du
p

Exchange-Minimal
Send/Recv

GPU kernel
Baseline

Fig. 7: Message Size vs. Speedup, 4 Nodes on Delta/Polaris.
Our GPU permutation kernel (blue) outperforms other mini-
mal and non-minimal communication techniques for distance
halving, recursive doubling Allgather.

A. Implementation

We implement both parameterized and non-parameterized
versions of k-ring, recursive multiplying, and permuted re-
cursive multiplying as an LD PRELOAD library for NCCL
Allgather and Allreduce collective functions. The library is
built on top of NCCL send/receive primitives. We use NCCL
groups to overlap independent message primitives, such as in
recursive multiplying. We implement the LogGP profiler using
a customized version of the NCCL latency test from the OSU
microbenchmark suite [1]. We implement the discrete event
simulation framework and schedule generator in Python.

B. Evaluation Systems

We use NCSA Delta and Polaris at ALCF for our em-
pirical evaluation. Both machines are equipped with a single
socket AMD CPU with 4 NVIDIA A100 GPUs connected via
NVLink rated at 600Gbps. Note that all experiments in this
paper use 4 processes per node, one per GPU. Both machines
also use an HPE/Cray Slingshot 11, 200Gbps interconnect



0.8

1.0

1.2

M
ea

su
re

d
k=2
k=4
k=8
k=16
Baseline

1 
B

2 
B

4 
B

8 
B

16
 B

32
 B

64
 B

12
8 

B
25

6 
B

51
2 

B
1 

KB
2 

KB
4 

KB
8 

KB
16

 K
B

32
 K

B
64

 K
B

12
8 

KB
25

6 
KB

51
2 

KB
1 

M
B

2 
M

B
4 

M
B

8 
M

B
16

 M
B

32
 M

B
Message Size

0.8

1.0

1.2

1.4

1.6

Si
m

ul
at

ed

k=2
k=4
k=8
k=16
Baseline

(a) K-Ring

0.8

1.0

1.2

1.4

M
ea

su
re

d

k=4
k=8
k=64
Baseline

1 
B

2 
B

4 
B

8 
B

16
 B

32
 B

64
 B

12
8 

B
25

6 
B

51
2 

B
1 

KB
2 

KB
4 

KB
8 

KB
16

 K
B

32
 K

B
64

 K
B

12
8 

KB
25

6 
KB

51
2 

KB
1 

M
B

2 
M

B
4 

M
B

8 
M

B
16

 M
B

32
 M

B

Message Size

0.5

1.0

1.5

2.0

2.5

Si
m

ul
at

ed

k=4
k=8
k=64
Baseline

(b) Recursive Mult.

0.4

0.6

0.8

1.0

1.2

1.4

M
ea

su
re

d

k=4
k=8
k=64
Baseline

1 
B

2 
B

4 
B

8 
B

16
 B

32
 B

64
 B

12
8 

B
25

6 
B

51
2 

B
1 

KB
2 

KB
4 

KB
8 

KB
16

 K
B

32
 K

B
64

 K
B

12
8 

KB
25

6 
KB

51
2 

KB
1 

M
B

2 
M

B
4 

M
B

8 
M

B
16

 M
B

32
 M

B

Message Size

0.5

1.0

1.5

2.0

2.5

Si
m

ul
at

ed

k=4
k=8
k=64
Baseline

(c) Per. Recursive Mult.
Fig. 8: Message Size vs. Measured or Simulated Speedup (Higher is Better), 16-node Allgather on Delta. The simulated
speedups align with the measured relative parameter ordering and curve features for each algorithm.

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4

Sp
ee

du
p

K-Ring RM PRM K-Ring RM PRM K-Ring RM PRM K-Ring RM PRM K-Ring RM PRM K-Ring RM PRM K-Ring RM PRM K-Ring RM PRM
Node 1 Node 4 Node 16 Node 64 Node 1 Node 4 Node 16 Node 64

AllGather AllReduce
Non-Parameterized Parameterized (Simulation Choice) Parameterized (Optimal)

Si
m

ul
at

ed
O

pt
im

al

1.201.22

Fig. 9: Achievable performance with simulation-based parameter selection across different collectives, node counts, and
algorithms on Delta. We are able to achieve, on average, 98% of the performance of the best parameter.

with dragonfly topology. Each Polaris node has two Slingshot
network cards, while each Delta node only has one.

We do not compare directly against NCCL or other col-
lective communication libraries. The goal of this paper is to
specifically study the benefit of parameterized algorithms for
GPU-GPU collective communication.

C. Speedups and Scaling

Fig. 5 illustrates that our parameterized algorithms achieve
significant speedups on Delta for both Allgather and Allre-
duce operations (and Allgather on Polaris) across 16 nodes.
These graphs plot the message size versus the maximum
possible speedup from parameterization when compared to
the non-parameterized implementation, across all algorithm
classes. For these charts, we tested every non-trivial fac-
tor of 64, k-value ([2,4,8,16,32,64] for k-ring and [2,4,8]
for permuted/non-permuted recursive multiplying) and plotted
the highest-performing result from the fastest algorithm for
each message size. The background color indicates the best-
performing algorithm: red for recursive multiplying, light
orange for permuted recursive multiplying, and blue for k-ring.

For Allgather on both machines, we achieve speedups of
over 1.3x, especially with small message sizes, due to recursive
multiplying which overlaps message latencies. On Delta, non-
permuted recursive multiplying is slightly faster. On Polaris,
recursive multiplying performed better than the permuted

version for messages between 16B and 32KB. For small to
medium-sized messages (32B-32KB), recursive multiplying
generally exhibits better performance by avoiding permuta-
tion and associated kernel launch overheads. For medium-
sized messages (32KB-1MB), permuted recursive multiplying
provides the best performance by leveraging the improved
bandwidth of intranode GPU-GPU links, offsetting permuta-
tion time. Both Delta and Polaris successfully leveraged multi-
ported network resources by achieving the best performance
with k=4 or k=8 in recursive multiplying algorithms for
small to medium-sized messages. In particular, both parameter
values achieve similar performance in recursive multiplying
on Delta, while k=4 is better than k=8 in permuted recursive
multiplying for medium-sized messages. For larger messages,
k-ring offers modest speedups in some cases. Since results on
Polaris were similar to those on Delta, we focus on the Delta
results. Performance trends are alike unless indicated.

For Allreduce, we see a similar pattern. Recursive multi-
plying and permuted recursive multiplying have identical net-
work loads, leading to minor performance differences (under
5%) for small to medium messages, likely due to run-to-run
variance. For large messages, ring and k-ring are again the
most effective algorithms, with k-ring providing occasional
speedups for messages beyond 2MB.

Fig. 6 demonstrates that speedups from parameterization
occur across scales from 1 to 64 nodes. The graphs plot



message size against speedup, with the 16-node line matching
Fig. 5. We include lines for other scales to compare and
contrast. In general, we see speedups for small messages
increase with node count, while large messages benefit more
at smaller scales. All scales show speedups of over 1.3x across
message sizes.

We observe significant speedups with parameterized algo-
rithms for both collectives across a variety of scales on a
modern GPU-based supercomputer, validating the key contri-
butions of this paper.

D. GPU-Specific Optimization

Fig. 7 shows that our GPU-specific in-place permutation
kernel applied to the distance halving, recursive doubling algo-
rithm outperforms other generic strategies. We plot speedups
between different minimal-communication implementations of
the distance halving, recursive doubling algorithm, with the
non-minimal communication method presented in [22] as our
baseline. We compare our GPU kernel approach with two other
methods. The first method (Exchange-Minimal) is similar to
the non-minimal exchange method, but keeps its original data
after the initial message exchange. All sends and receives
for the original data are then omitted to avoid redundant
communication. The second method averts permutation by
sending non-contiguous data as separate, smaller messages
within a NCCL group (Send/Recv). Each message is then
received separately into the correct buffer location.

Our GPU-optimized permutation kernel achieves over 1.3x
speedup over the baseline for small message sizes. For large
message sizes (≥2MB), the Send/Recv method is superior due
to its constant time latency, while the permutation kernel’s cost
scales linearly. However, for large messages, the ring and k-
ring algorithms are the most efficient, making our GPU kernel
approach optimal across all relevant scenarios.

E. Parameter Selection with Simulation

Fig. 8 shows how our simulations accurately capture trends
in parameterized algorithm performance and identify optimal
parameters. We plot the speedup of various k-values against the
non-parameterized baseline for each Allgather algorithm on
Delta (16-nodes). Shaded regions indicate the best k while re-
gions that are not shaded indicate better baseline performance.

While simulations often show higher speedups than mea-
sured results, they align well in the relative ordering of
parameters. For k-ring, the simulator correctly identifies 4 as
the optimal parameter for small and medium message sizes.
For permuted recursive multiplying, the simulator correctly
chooses 8 for smaller messages and 4 for medium messages.
When there is disagreement, the simulation typically selects
parameters with near-optimal performance, such as k=4 versus
k=8 for recursive multiplying.

The simulator replicates features observed in measured data,
e.g., accurately reproducing the performance curve of large k-
values (e.g., k=64) and predicting their performance drop-offs
across all algorithms. These results confirm the simulator’s
validity and its potential for effective parameter selection.

Fig. 9 illustrates the speedups achievable with our methodol-
ogy across various algorithms, scales, and collectives on Delta.
The baselines (1.0 speedup) representing non-parameterized
algorithms are given in red. Speedups achieved with param-
eters selected by the simulator (simulation-selected perfor-
mance) are shown in orange. The maximum speedups, assum-
ing the optimal set of parameters were selected, are depicted
in blue. The speedup denoted by a single bar represents the
geometric mean speedup across message sizes up to 2MB.

Altogether, the simulation-selected performance closely
matches the measured optimal performance, achieving a geo-
metric mean speedup of 20% and capturing 98% of the optimal
performance.

F. Evaluation Summary
Overall, our experiments demonstrate that algorithmic pa-

rameterization significantly enhances collective performance
on GPU-based supercomputers across different scales and
machines. Furthermore, our exploration of an in-place permu-
tation kernel exemplified the possibility of using GPU-specific
characteristics to optimize collective algorithms. Finally, with
a simulation-based parameter selection approach, we were able
to choose performant parameter values, effectively realizing
the benefits of collective algorithm parameterization.

VI. CONCLUSION

Efficient collective communication is vital for modern
supercomputers with hierarchical networks and GPUs. We
showed that parameterized algorithms for Allgather and Allre-
duce enhance adaptability and performance on supercomputers
like NCSA Delta and Argonne Polaris. Using a LogGP-based
simulation, we were able to achieve on average 20% speedup
over non-parameterized algorithms while capturing 98% of the
potential speedup automatically.

ACKNOWLEDGMENTS

This effort is partially supported by the U.S. National
Science Foundation (NSF) under awards CNS-2211315, CCF-
2119069, and CNS-2211508 and is based upon work supported
by the Graduate Research Fellowship Program under Grant
No DGE-2234667. Any opinions, findings, and conclusions
or recommendations expressed in this material are those of
the author(s) and do not necessarily reflect the views of the
National Science Foundation. This material is also supported
by funding from the Laboratory Directed Research and from
Argonne National Laboratory, provided by the Director, Office
of Science, of the U.S. Department of Energy under Contract
No. DE-AC02-06CH11357.

This research used resources of the National Artificial
Intelligence Research Resource (NAIRR) Pilot and the Delta
advanced computing and data resource, which is supported by
the National Science Foundation (award NSF-OAC 2005572).
This research also used resources of the Argonne Leadership
Computing Facility, which is a DOE Office of Science User
Facility supported under Contract DE-AC02-06CH11357.

We would like to thank Griffin Dube for his early contribu-
tions and Suisui Xu for the insightful discussions.



REFERENCES

[1] “OSU micro-benchmarks.” [Online]. Available: https://mvapich.cse.
ohio-state.edu/benchmarks/

[2] “Frontier user guide,” 2023. [Online]. Available: https://docs.olcf.ornl.
gov/systems/frontier user guide.html

[3] “Aurora,” 2025. [Online]. Available: https://docs.alcf.anl.gov/aurora/
[4] “El capitan,” 2025. [Online]. Available: https://hpc.llnl.gov/hardware/

compute-platforms/el-capitan
[5] A. Alexandrov, M. F. Ionescu, K. E. Schauser, and C. Scheiman,

“LogGP: Incorporating long messages into the LogP model—one step
closer towards a realistic model for parallel computation,” in Proceed-
ings of the seventh annual ACM symposium on Parallel algorithms and
architectures, 1995, pp. 95–105.

[6] AMD, “RCCL,” https://github.com/ROCm/rccl, 2025.
[7] Z. Cai, Z. Liu, S. Maleki, M. Musuvathi, T. Mytkowicz, J. Nelson, and

O. Saarikivi, “Synthesizing optimal collective algorithms,” in Proceed-
ings of the 26th ACM SIGPLAN Symposium on Principles and Practice
of Parallel Programming, 2021, pp. 62–75.

[8] E. Chan, M. Heimlich, A. Purkayastha, and R. Van De Geijn, “Collective
communication: theory, practice, and experience,” Concurrency and
Computation: Practice and Experience, vol. 19, no. 13, pp. 1749–1783,
2007.

[9] D. Culler, R. Karp, D. Patterson, A. Sahay, K. E. Schauser, E. Santos,
R. Subramonian, and T. Von Eicken, “LogP: Towards a realistic model
of parallel computation,” in Proceedings of the fourth ACM SIGPLAN
symposium on Principles and practice of parallel programming, 1993,
pp. 1–12.

[10] W. J. Dally, S. W. Keckler, and D. B. Kirk, “Evolution of the graphics
processing unit (gpu),” IEEE Micro, vol. 41, no. 6, pp. 42–51, 2021.

[11] J. Duan, S. Zhang, Z. Wang, L. Jiang, W. Qu, Q. Hu, G. Wang, Q. Weng,
H. Yan, X. Zhang et al., “Efficient training of large language models on
distributed infrastructures: a survey,” arXiv preprint arXiv:2407.20018,
2024.

[12] K. Fan, S. Petruzza, T. Gilray, and S. Kumar, “Configurable algorithms
for all-to-all collectives,” in ISC High Performance 2024 Research Paper
Proceedings (39th International Conference). Prometeus GmbH, 2024,
pp. 1–12.

[13] G. Feng, D. Dong, and Y. Lu, “Optimized MPI collective algorithms
for dragonfly topology,” in Proceedings of the 36th ACM International
Conference on Supercomputing, 2022, pp. 1–11.

[14] T. Hoefler, A. Lichei, and W. Rehm, “Low-overhead LogGP parameter
assessment for modern interconnection networks,” in 2007 IEEE Inter-
national Parallel and Distributed Processing Symposium. IEEE, 2007,
pp. 1–8.

[15] T. Hoefler, T. Mehlan, F. Mietke, and W. Rehm, “Fast barrier synchro-
nization for infiniband/spl trade,” in Proceedings 20th IEEE Interna-
tional Parallel & Distributed Processing Symposium. IEEE, 2006, pp.
7–pp.

[16] T. Hoefler, T. Schneider, and A. Lumsdaine, “LogGOPSim: simulating
large-scale applications in the LogGOPS model,” in Proceedings of the
19th ACM International Symposium on High Performance Distributed
Computing, 2010, pp. 597–604.

[17] Intel, “oneCCL,” https://github.com/uxlfoundation/oneCCL, 2025.
[18] H. Khetawat, N. Jain, A. Bhatele, and F. Mueller, “Predicting GPUDirect

benefits for hpc workloads,” in 2024 32nd Euromicro International
Conference on Parallel, Distributed and Network-Based Processing
(PDP). IEEE, 2024, pp. 88–97.

[19] J. Kim, W. J. Dally, S. Scott, and D. Abts, “Technology-driven, highly-
scalable dragonfly topology,” ACM SIGARCH Computer Architecture
News, vol. 36, no. 3, pp. 77–88, 2008.

[20] NVIDIA, “NCCL,” https://github.com/NVIDIA/nccl, 2025.
[21] P. Patarasuk and X. Yuan, “Bandwidth optimal all-reduce algorithms for

clusters of workstations,” Journal of Parallel and Distributed Comput-
ing, vol. 69, no. 2, pp. 117–124, 2009.

[22] P. Sack and W. Gropp, “Faster topology-aware collective algorithms
through non-minimal communication,” ACM SIGPLAN Notices, vol. 47,
no. 8, pp. 45–54, 2012.

[23] A. Sergeev and M. Del Balso, “Horovod: fast and easy distributed deep
learning in TensorFlow,” arXiv preprint arXiv:1802.05799, 2018.

[24] A. Shah, V. Chidambaram, M. Cowan, S. Maleki, M. Musuvathi,
T. Mytkowicz, J. Nelson, O. Saarikivi, and R. Singh, “{TACCL}:
Guiding collective algorithm synthesis using communication sketches,”

in 20th USENIX Symposium on Networked Systems Design and Imple-
mentation (NSDI 23), 2023, pp. 593–612.

[25] R. Thakur and W. D. Gropp, “Improving the performance of collective
operations in MPICH,” in Recent Advances in Parallel Virtual Machine
and Message Passing Interface, J. Dongarra, D. Laforenza, and S. Or-
lando, Eds. Springer Berlin Heidelberg, 2003, pp. 257–267.

[26] R. Thakur, R. Rabenseifner, and W. Gropp, “Optimization of collective
communication operations in MPICH,” The International Journal of
High Performance Computing Applications, vol. 19, no. 1, pp. 49–66,
2005.

[27] M. Wilkins, H. Wang, P. Liu, B. Pham, Y. Guo, R. Thakur, P. Dinda,
and N. Hardavellas, “Generalized collective algorithms for the exascale
era,” in 2023 IEEE International Conference on Cluster Computing
(CLUSTER). IEEE, 2023, pp. 60–71.

[28] Y. Zhao, A. Gu, R. Varma, L. Luo, C.-C. Huang, M. Xu, L. Wright,
H. Shojanazeri, M. Ott, S. Shleifer et al., “Pytorch fsdp: experiences on
scaling fully sharded data parallel,” arXiv preprint arXiv:2304.11277,
2023.

https://mvapich.cse.ohio-state.edu/benchmarks/
https://mvapich.cse.ohio-state.edu/benchmarks/
https://docs.olcf.ornl.gov/systems/frontier_user_guide.html
https://docs.olcf.ornl.gov/systems/frontier_user_guide.html
https://docs.alcf.anl.gov/aurora/
https://hpc.llnl.gov/hardware/compute-platforms/el-capitan
https://hpc.llnl.gov/hardware/compute-platforms/el-capitan
https://github.com/ROCm/rccl
https://github.com/NVIDIA/nccl

	Introduction
	Background and Related Work
	Leveraging Modern GPU and Node Networks
	Importance of Collective Communication
	Optimizing Collective Communication for GPUs
	Generalized Collective Algorithms
	LogGP Performance Model

	Parameterized Collectives
	K-Ring
	Recursive Multiplying
	Permuted Recursive Multiplying

	Fast Parameter Selection Through Simulation
	Collective Schedule
	GPU Topology and LogGP Parameters
	Discrete-Event Simulator
	Device and Node Contention

	Evaluation
	Implementation
	Evaluation Systems
	Speedups and Scaling
	GPU-Specific Optimization
	Parameter Selection with Simulation
	Evaluation Summary

	Conclusion
	References

